1dir.cloud - 1dir.org - 1dir.cc

1 decimal integer ring cycle of many

Quantum Field Fractal Polarization Math Constants

nemeth braille printable arx calc

pronounced why phi prime quotients

Y φ Θ P Q Ψ

condensed matter

Y Phi Theta Prime Q Quotients Base Numerals 1dir 2dir 3dir cdir

numer nu mer numerical nomenclature & arcs

ACQFPS

Advanced Complex Quantum Fractal Polarization Sets

When calculating for variables Y  φ  Θ  P  Q  A  M  V  W  E  F  I  H  D B O G L K U J R Z T S Ψ     ∘⧊°  ∘∇° the ratio of the fractals must first be factored before using those quantity numeral values in equations with math formulas and other calculus. An infinite number of variables to each path is in a potential and with that fact extremely complex equations of precision can be factored. 

A numeral of one scale set in a consecutive string will produce a base logic(s) library of the variables mentioned, however shifting just the base factors will produce a path sequence and set of completely different ratios.

if Yn1 is divided with Yn2 then both φ and Θ are quotients determined by the path of noted ⅄ using consecutive numerals of Y scale.

if Pn1 is divided with Pn2 then both 1⅄Q and 2⅄Q are quotients determined by the path of noted ⅄ using consecutive numerals of P scale.

A potential of the path being that 1⅄ and 2⅄ and 3⅄ is not limited to anything aside from the variables from consecutive string orders is noted means that the numbered variable of Y or P is simply noted being a numeral from the consecutive numbers defined as prime or fibonacci count. Entirely different sets of ratio variables can be factored in library arrays of a much different scale between the two factors of Y scale or the two factors of P scale.

Examples

Path 2(Yn1/Yn2) is to Θ just as is (Yn1/Yn101) and so on.

Path 1⅄(Yn2/Yn1) is to φ just as is (Yn101/Yn1) and so on.

and 

Path 1⅄(Pn2/Pn1) is to 1⅄Q just as is (Pn101/Pn1) and so on.

Path 2⅄(Pn1/Pn2) is to 2⅄Q just as is (Pn1/Pn101) and so on.

if 3⅄ Path is not applicable to bases Y and P because neither contains a decimal value of potential cycle stem in variable then it is reserved for variables on same path strings that do have potential for change in the decimal stem where a cycle is factorable. Just as the numbered variable of a scale in the examples is noted being Θ φ 1⅄Q and 2⅄Q applied to (Nn1/Nn101) or (Nn101/Nn1), the path 3cn is applicable to variable equations containing Θ φ 1⅄Q and 2⅄Q that have that decimal stem cycle variable potential.

While equations potentials are infinite and this description space is limited to a computer display shown through a limited communications of that description and its potential variables, a base library of factored numerals is still able to be shown. 

While the base scale factors are able to shift in alignments of matrice array combinations, a basic foundation of factoring can be built based on no shift and shift of 1 left or right so to say.

Examples

Path 2⅄(Yn1/Yn2) is to Θ just as is (Yn1/Yn3) and so on of set ∈2Yn1

Path 1⅄(Yn2/Yn1) is to φ just as is (Yn1/Yn3) and so on of set ∈1Yn1

and 

Path 1⅄(Pn2/Pn1) is to 1⅄Q just as is (Pn3/Pn1) and so on of set ∈1Pn1

Path 2⅄(Pn1/Pn2) is to 2⅄Q just as is (Pn1/Pn3) and so on of set ∈2Pn1

Variables A  M  V  W are derived from a path set ∈⅄ of Y and P for equations

A=∈1/Q)cn

M=2/Q)cn

V= 1(Q/φ)cn

W=2(Q/φ)cn

3⅄A of A=∈1/Q)cn

3⅄M of M=2/Q)cn

3⅄V of V= 1(Q/φ)cn

3⅄W of W=2(Q/φ)cn

Variables E  F  I  H are derived from a path set ∈⅄ of Y and P for equations

E=∈1/Q)cn

F=2/Q)cn

I=1(Q/Θ)cn

H=2(Q/Θ)cn

3⅄E of E=∈1/Q)cn

3⅄F of F=2/Q)cn

3⅄I of I=1(Q/Θ)cn

3⅄H of H=2(Q/Θ)cn


Then DB and OG paths in wave functions of cycle variants 1⅄, 2⅄, 3

D=1(φ/Θ)cn

B=2(φ/Θ)cn

O=1(Θ/φ)cn

G=2(Θ/φ)cn


Then LK and UJ paths in wave functions of cycle variants 1⅄, 2⅄, 3

L=1(1Qn2/2Qn1)cn

K=2(1Qn1/2Qn2)cn

U=1(2Qn2/1Qn1)cn

J=2(2Qn1/1Qn2)cn


Then RZ and TS paths in wave functions of cycle variants

R=(φ/P)cn  that paths  1⅄, 2⅄, 3⅄ are then applicable to the variables φ and P of R

Z=(P/φ)cn  that paths  1⅄, 2⅄, 3⅄ are then applicable to the variables P and φ of Z

T=(Θ/P)cn  that paths  1⅄, 2⅄, 3⅄ are then applicable to the variables Θ and P of T

S=(P/Θ)cn  that paths  1⅄, 2⅄, 3⅄ are then applicable to the variables Θ and P of S

AMVWEFIHDBOGLKUJRZTS variables are all ratio sets that are then also applicable to division with Y in paths  1⅄, 2⅄, 3⅄ and more such as every other or every third of the consecutive numbers in Y Θ φ P Q scale to degrees in stem cycle variants of Ncn applicable in functions with AMVWEFIHDBOGLKUJRZTS that have such potential.

Variables A  M  V  W  E  F  I  H  then have the potential of a basic foundation of factoring on no shift and shift of 1 or more and so on. Let N be a number that represents A  M  V  W  E  F  I  H variables

Path 1⅄(Nn2/Nn1) is to 1⅄N just as is (Nn3/Nn1) and so on of set ∈1Nn1

Path 2⅄(Nn1/Nn2) is to 2N just as is (Nn1/Nn3) and so on of set ∈2Nn1

Path 3⅄(Nncn/Nncn) is to 3Ncn just as is (Nncn/Nncn) and so on of set ∈3Nncn

The Shift in the base scale consecutive numbers will factor quotients that are real numbers and ratios that are definable and those variables are not errors and are precise calculations of advanced complex quantum fractal polarization sets.

To begin

Define variable factors of no shift in Y P φ  Θ  1Q and 2Q that sets 3⅄Nncn each have a library defined to path of ⅄N.

1dir 

A=∈1/Q)cn then n1/Qn1) and n2/Qn1) for 1⅄A 

so that variables of 1⅄A can be factored as defined variables of cn in other functions and equations that have use with the factor from set 1⅄Ancn such as paths 12A, 22A and 32A or more complex uses of the variable defined. Paths /P) and /Y) differ from A=∈1/Q)


M=2/Q)cn then (φn1/Qn1) and n1/Qn2) for 2⅄M

so that variables of 2M can be factored as defined variables of cn in other functions and equations that have use with the factor from set 2Mncn such as paths 12M, 22M and 32M or more complex uses of the variable defined. Paths /P) and /Y) differ from M=2/Q)


V= 1(Q/φ)cn then (Qn1/φn1) and (Qn2/φn1) for 1⅄V

so that variables of 1V can be factored as defined variables of cn in other functions and equations that have use with the factor from set 1⅄Vncn such as paths 12V, 22V and 32V or more complex uses of the variable defined. Paths (Q/P) and (Q/Y) differ from V=1(Q/φ)


W=2(Q/φ)cn then (Qn1/φn1) and (Qn1/φn2) for 2⅄W

so that variables of 2⅄W can be factored as defined variables of cn in other functions and equations that have use with the factor from set 2⅄Wncn such as paths 12W, 22W and 32W or more complex uses of the variable defined. Paths (Q/P) and (Q/Y) differ from W=2(Q/φ)


E=∈1/Q)cn then n1/Qn1) and n2/Qn1) for 1⅄E

so that variables of 1E can be factored as defined variables of cn in other functions and equations that have use with the factor from set 1Encn such as paths 12E, 22E and 32E or more complex uses of the variable defined. Paths (Θ/P) and (Θ/Y) differ from E=∈1/Q)


F=2/Q)cn then n1/Qn1) and n1/Qn2) for 2⅄F

so that variables of 2F can be factored as defined variables of cn in other functions and equations that have use with the factor from set 2⅄Fncn such as paths 12F, 22F and 32F or more complex uses of the variable defined. Paths (Θ/P) and (Θ/Y) differ from F=2/Q)


I=1(Q/Θ)cn then (Qn1/Θn1) and (Qn2/Θn1) for 1⅄I

so that variables of 1I can be factored as defined variables of cn in other functions and equations that have use with the factor from set 1Incn such as paths 12I, 22I and 32I or more complex uses of the variable defined. Paths (P/Θ) and (Y/Θ) differ from I=1(Q/Θ)


H=2(Q/Θ)cn then (Qn1/Θn1) and (Qn1/Θn2) for 2⅄H

so that variables of 2H can be factored as defined variables of cn in other functions and equations that have use with the factor from set 2Hncn such as paths 12H, 22H and 32H or more complex uses of the variable defined. Paths (P/Θ) and (Y/Θ) differ from H=2(Q/Θ)

Later functions of  1X, 1+⅄cn, 1-⅄, 2-⅄, n, ⅄ncn are then applicable to variables from sets 

Y  φ  Θ  P  Q  A  M  V  W  E  F  I  H  D B O G L K U J R Z T S     ∘⧊°  ∘∇°

And arrays are structurable to the same base shift and paths described of those variable ordinal consecutive scales.

Basic Library of Quantum Fractal Polarization Sets  2dir  3dir  cdir  1dir

Numeral Array logic symbols to use of next tier alt paths and stem cell cycle notations 

ᐱ for (⅄ᐱ)

1ᐱ is a ratio of divided variables of A  B  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  Y  Z  φ  Θ using the later divided by previous path 1⅄ for ᐱ

(ᐱ)=1(⅄ᐱ) and 2(⅄ᐱ) and and 3(⅄ᐱ)of variables ⅄A , ⅄M, ⅄V, ⅄W, A, M, V, W, φ, Θ, Q, Y, P and whole numbers or a variable factors noted that (ᐱ) is applicable with in quanta such that 1⅄, 2⅄, and 3⅄ paths differ variables of ᐱ

(ᐱ)=sets like

∈(A/A) then

Example

if ∈(ᐱ) of A/A=∈(A/A)

then ᐱ of A/A needs a definition of the path of variables of A.

as (ᐱ) of 1⅄(A/A) and (ᐱ) of 2⅄(A/A) and (ᐱ) of 3⅄(A/A) differ in path of Nn/Nn

(ᐱ) of 1⅄(A/A)=(An2/An1)=(1n2/1Qn1)n2 /1n2/1Qn1)n1) of set ∈A=1n2/1Qn1)cn 

and

(ᐱ) of 1⅄(A/A)=(An2/An1)=(1n2/2Qn1)n2 /1n2/2Qn1)n1) of set A=∈1n2/2Qn1)cn

and the defined path of Q in the base of A is essential to the definition of an (ᐱ) of 1⅄(A/A)ncn

then as 2⅄(A/A) would differ in path of its set (ᐱ)

(ᐱ) of 2⅄(A/A)=(An1/An2) dependent again on the path of Q to the A

and so on for 

(ᐱ) of 3⅄(A/A)=(Ancn/Ancn) that is division path of like terms with a difference in variant stem decimal cycle of Nncn

(ᐱ)=sets like ∈(A/A) that ∈1ᐱ(An2/An1) and 2ᐱ(An1/An2)3ᐱ(An1cn/An1cn) for all variables A,B,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,φ,Θ that provide variables for factoring complex ᗑ variables.

nᐱ(An/An), nᐱ(An/Bn), nᐱ(An/Dn), nᐱ(An/En), nᐱ(An/Fn), nᐱ(An/Gn), nᐱ(An/Hn), nᐱ(An/In), nᐱ(An/Jn), nᐱ(An/Kn), nᐱ(An/Ln), nᐱ(An/Mn), nᐱ(An/Nn), nᐱ(An/On), nᐱ(An/Pn), nᐱ(An/Qn), nᐱ(An/Rn), nᐱ(An/Sn), nᐱ(An/Tn),nᐱ(An/Un),  nᐱ(An/Vn), nᐱ(An/Wn), nᐱ(An/Yn), nᐱ(An/Zn), nᐱ(An/φn), nᐱ(An/Θn)

nᐱ(Bn/An), nᐱ(Bn/Bn), nᐱ(Bn/Dn), nᐱ(Bn/En), nᐱ(Bn/Fn), nᐱ(Bn/Gn), nᐱ(Bn/Hn), nᐱ(Bn/In), nᐱ(Bn/Jn), nᐱ(Bn/Kn), nᐱ(Bn/Ln), nᐱ(Bn/Mn), nᐱ(Bn/Nn), nᐱ(Bn/On), nᐱ(Bn/Pn), nᐱ(Bn/Qn), nᐱ(Bn/Rn), nᐱ(Bn/Sn), nᐱ(Bn/Tn),nᐱ(Bn/Un),  nᐱ(Bn/Vn), nᐱ(Bn/Wn), nᐱ(Bn/Yn), nᐱ(Bn/Zn), nᐱ(Bn/φn), nᐱ(Bn/Θn)

nᐱ(Dn/An), nᐱ(Dn/Bn), nᐱ(Dn/Dn), nᐱ(Dn/En), nᐱ(Dn/Fn), nᐱ(Dn/Gn), nᐱ(Dn/Hn), nᐱ(Dn/In), nᐱ(Dn/Jn), nᐱ(Dn/Kn), nᐱ(Dn/Ln), nᐱ(Dn/Mn), nᐱ(Dn/Nn), nᐱ(Dn/On), nᐱ(Dn/Pn), nᐱ(Dn/Qn), nᐱ(Dn/Rn), nᐱ(Dn/Sn), nᐱ(Dn/Tn),nᐱ(Dn/Un),  nᐱ(Dn/Vn), nᐱ(Dn/Wn), nᐱ(Dn/Yn), nᐱ(Dn/Zn), nᐱ(Dn/φn), nᐱ(Dn/Θn)

nᐱ(En/An), nᐱ(En/Bn), nᐱ(En/Dn), nᐱ(En/En), nᐱ(En/Fn), nᐱ(En/Gn), nᐱ(En/Hn), nᐱ(En/In), nᐱ(En/Jn), nᐱ(En/Kn), nᐱ(En/Ln), nᐱ(En/Mn), nᐱ(En/Nn), nᐱ(En/On), nᐱ(En/Pn), nᐱ(En/Qn), nᐱ(En/Rn), nᐱ(En/Sn), nᐱ(En/Tn),nᐱ(En/Un),  nᐱ(En/Vn), nᐱ(En/Wn), nᐱ(En/Yn), nᐱ(En/Zn), nᐱ(En/φn), nᐱ(En/Θn)

nᐱ(Fn/An), nᐱ(Fn/Bn), nᐱ(Fn/Dn), nᐱ(Fn/En), nᐱ(Fn/Fn), nᐱ(Fn/Gn), nᐱ(Fn/Hn), nᐱ(Fn/In), nᐱ(Fn/Jn), nᐱ(Fn/Kn), nᐱ(Fn/Ln), nᐱ(Fn/Mn), nᐱ(Fn/Nn), nᐱ(Fn/On), nᐱ(Fn/Pn), nᐱ(Fn/Qn), nᐱ(Fn/Rn), nᐱ(Fn/Sn), nᐱ(Fn/Tn),nᐱ(Fn/Un),  nᐱ(Fn/Vn), nᐱ(Fn/Wn), nᐱ(Fn/Yn), nᐱ(Fn/Zn), nᐱ(Fn/φn), nᐱ(Fn/Θn)

nᐱ(Gn/An), nᐱ(Gn/Bn), nᐱ(Gn/Dn), nᐱ(Gn/En), nᐱ(Gn/Fn), nᐱ(Gn/Gn), nᐱ(Gn/Hn), nᐱ(Gn/In), nᐱ(Gn/Jn), nᐱ(Gn/Kn), nᐱ(Gn/Ln), nᐱ(Gn/Mn), nᐱ(Gn/Nn), nᐱ(Gn/On), nᐱ(Gn/Pn), nᐱ(Gn/Qn), nᐱ(Gn/Rn), nᐱ(Gn/Sn), nᐱ(Gn/Tn),nᐱ(Gn/Un),  nᐱ(Gn/Vn), nᐱ(Gn/Wn), nᐱ(Gn/Yn), nᐱ(Gn/Zn), nᐱ(Gn/φn), nᐱ(Gn/Θn)

nᐱ(Hn/An), nᐱ(Hn/Bn), nᐱ(Hn/Dn), nᐱ(Hn/En), nᐱ(Hn/Fn), nᐱ(Hn/Gn), nᐱ(Hn/Hn), nᐱ(Hn/In), nᐱ(Hn/Jn), nᐱ(Hn/Kn), nᐱ(Hn/Ln), nᐱ(Hn/Mn), nᐱ(Hn/Nn), nᐱ(Hn/On), nᐱ(Hn/Pn), nᐱ(Hn/Qn), nᐱ(Hn/Rn), nᐱ(Hn/Sn), nᐱ(Hn/Tn),nᐱ(Hn/Un),  nᐱ(Hn/Vn), nᐱ(Hn/Wn), nᐱ(Hn/Yn), nᐱ(Hn/Zn), nᐱ(Hn/φn), nᐱ(Hn/Θn)

nᐱ(In/An), nᐱ(In/Bn), nᐱ(In/Dn), nᐱ(In/En), nᐱ(In/Fn), nᐱ(In/Gn), nᐱ(In/Hn), nᐱ(In/In), nᐱ(In/Jn), nᐱ(In/Kn), nᐱ(In/Ln), nᐱ(In/Mn), nᐱ(In/Nn), nᐱ(In/On), nᐱ(In/Pn), nᐱ(In/Qn), nᐱ(In/Rn), nᐱ(In/Sn), nᐱ(In/Tn),nᐱ(In/Un),  nᐱ(In/Vn), nᐱ(In/Wn), nᐱ(In/Yn), nᐱ(In/Zn), nᐱ(In/φn), nᐱ(In/Θn)

nᐱ(Jn/An), nᐱ(Jn/Bn), nᐱ(Jn/Dn), nᐱ(Jn/En), nᐱ(Jn/Fn), nᐱ(Jn/Gn), nᐱ(Jn/Hn), nᐱ(Jn/In), nᐱ(Jn/Jn), nᐱ(Jn/Kn), nᐱ(Jn/Ln), nᐱ(Jn/Mn), nᐱ(Jn/Nn), nᐱ(Jn/On), nᐱ(Jn/Pn), nᐱ(Jn/Qn), nᐱ(Jn/Rn), nᐱ(Jn/Sn), nᐱ(Jn/Tn),nᐱ(Jn/Un),  nᐱ(Jn/Vn), nᐱ(Jn/Wn), nᐱ(Jn/Yn), nᐱ(Jn/Zn), nᐱ(Jn/φn), nᐱ(Jn/Θn)

nᐱ(Kn/An), nᐱ(Kn/Bn), nᐱ(Kn/Dn), nᐱ(Kn/En), nᐱ(Kn/Fn), nᐱ(Kn/Gn), nᐱ(Kn/Hn), nᐱ(Kn/In), nᐱ(Kn/Jn), nᐱ(Kn/Kn), nᐱ(Kn/Ln), nᐱ(Kn/Mn), nᐱ(Kn/Nn), nᐱ(Kn/On), nᐱ(Kn/Pn), nᐱ(Kn/Qn), nᐱ(Kn/Rn), nᐱ(Kn/Sn), nᐱ(Kn/Tn),nᐱ(Kn/Un),  nᐱ(Kn/Vn), nᐱ(Kn/Wn), nᐱ(Kn/Yn), nᐱ(Kn/Zn), nᐱ(Kn/φn), nᐱ(Kn/Θn)

nᐱ(Ln/An), nᐱ(Ln/Bn), nᐱ(Ln/Dn), nᐱ(Ln/En), nᐱ(Ln/Fn), nᐱ(Ln/Gn), nᐱ(Ln/Hn), nᐱ(Ln/In), nᐱ(Ln/Jn), nᐱ(Ln/Kn), nᐱ(Ln/Ln), nᐱ(Ln/Mn), nᐱ(Ln/Nn), nᐱ(Ln/On), nᐱ(Ln/Pn), nᐱ(Ln/Qn), nᐱ(Ln/Rn), nᐱ(Ln/Sn), nᐱ(Ln/Tn),nᐱ(Ln/Un),  nᐱ(Ln/Vn), nᐱ(Ln/Wn), nᐱ(Ln/Yn), nᐱ(Ln/Zn), nᐱ(Ln/φn), nᐱ(Ln/Θn)

nᐱ(Mn/An), nᐱ(Mn/Bn), nᐱ(Mn/Dn), nᐱ(Mn/En), nᐱ(Mn/Fn), nᐱ(Mn/Gn), nᐱ(Mn/Hn), nᐱ(Mn/In), nᐱ(Mn/Jn), nᐱ(Mn/Kn), nᐱ(Mn/Ln), nᐱ(Mn/Mn), nᐱ(Mn/Nn), nᐱ(Mn/On), nᐱ(Mn/Pn), nᐱ(Mn/Qn), nᐱ(Mn/Rn), nᐱ(Mn/Sn), nᐱ(Mn/Tn),nᐱ(Mn/Un),  nᐱ(Mn/Vn), nᐱ(Mn/Wn), nᐱ(Mn/Yn), nᐱ(Mn/Zn), nᐱ(Mn/φn), nᐱ(Mn/Θn)

nᐱ(Nn/An), nᐱ(Nn/Bn), nᐱ(Nn/Dn), nᐱ(Nn/En), nᐱ(Nn/Fn), nᐱ(Nn/Gn), nᐱ(Nn/Hn), nᐱ(Nn/In), nᐱ(Nn/Jn), nᐱ(Nn/Kn), nᐱ(Nn/Ln), nᐱ(Nn/Mn), nᐱ(Nn/Nn), nᐱ(Nn/On), nᐱ(Nn/Pn), nᐱ(Nn/Qn), nᐱ(Nn/Rn), nᐱ(Nn/Sn), nᐱ(Nn/Tn),nᐱ(Nn/Un),  nᐱ(Nn/Vn), nᐱ(Nn/Wn), nᐱ(Nn/Yn), nᐱ(Nn/Zn), nᐱ(Nn/φn), nᐱ(Nn/Θn)

nᐱ(On/An), nᐱ(On/Bn), nᐱ(On/Dn), nᐱ(On/En), nᐱ(On/Fn), nᐱ(On/Gn), nᐱ(On/Hn), nᐱ(On/In), nᐱ(On/Jn), nᐱ(On/Kn), nᐱ(On/Ln), nᐱ(On/Mn), nᐱ(On/Nn), nᐱ(On/On), nᐱ(On/Pn), nᐱ(On/Qn), nᐱ(On/Rn), nᐱ(On/Sn), nᐱ(On/Tn),nᐱ(On/Un),  nᐱ(On/Vn), nᐱ(On/Wn), nᐱ(On/Yn), nᐱ(On/Zn), nᐱ(On/φn), nᐱ(On/Θn)

nᐱ(Pn/An), nᐱ(Pn/Bn), nᐱ(Pn/Dn), nᐱ(Pn/En), nᐱ(Pn/Fn), nᐱ(Pn/Gn), nᐱ(Pn/Hn), nᐱ(Pn/In), nᐱ(Pn/Jn), nᐱ(Pn/Kn), nᐱ(Pn/Ln), nᐱ(Pn/Mn), nᐱ(Pn/Nn), nᐱ(Pn/On), nᐱ(Pn/Pn), nᐱ(Pn/Qn), nᐱ(Pn/Rn), nᐱ(Pn/Sn), nᐱ(Pn/Tn),nᐱ(Pn/Un),  nᐱ(Pn/Vn), nᐱ(Pn/Wn), nᐱ(Pn/Yn), nᐱ(Pn/Zn), nᐱ(Pn/φn), nᐱ(Pn/Θn)

nᐱ(Qn/An), nᐱ(Qn/Bn), nᐱ(Qn/Dn), nᐱ(Qn/En), nᐱ(Qn/Fn), nᐱ(Qn/Gn), nᐱ(Qn/Hn), nᐱ(Qn/In), nᐱ(Qn/Jn), nᐱ(Qn/Kn), nᐱ(Qn/Ln), nᐱ(Qn/Mn), nᐱ(Qn/Nn), nᐱ(Qn/On), nᐱ(Qn/Pn), nᐱ(Qn/Qn), nᐱ(Qn/Rn), nᐱ(Qn/Sn), nᐱ(Qn/Tn),nᐱ(Qn/Un),  nᐱ(Qn/Vn), nᐱ(Qn/Wn), nᐱ(Qn/Yn), nᐱ(Qn/Zn), nᐱ(Qn/φn), nᐱ(Qn/Θn)

nᐱ(Rn/An), nᐱ(Rn/Bn), nᐱ(Rn/Dn), nᐱ(Rn/En), nᐱ(Rn/Fn), nᐱ(Rn/Gn), nᐱ(Rn/Hn), nᐱ(Rn/In), nᐱ(Rn/Jn), nᐱ(Rn/Kn), nᐱ(Rn/Ln), nᐱ(Rn/Mn), nᐱ(Rn/Nn), nᐱ(Rn/On), nᐱ(Rn/Pn), nᐱ(Rn/Qn), nᐱ(Rn/Rn), nᐱ(Rn/Sn), nᐱ(Rn/Tn),nᐱ(Rn/Un),  nᐱ(Rn/Vn), nᐱ(Rn/Wn), nᐱ(Rn/Yn), nᐱ(Rn/Zn), nᐱ(Rn/φn), nᐱ(Rn/Θn)

nᐱ(Sn/An), nᐱ(Sn/Bn), nᐱ(Sn/Dn), nᐱ(Sn/En), nᐱ(Sn/Fn), nᐱ(Sn/Gn), nᐱ(Sn/Hn), nᐱ(Sn/In), nᐱ(Sn/Jn), nᐱ(Sn/Kn), nᐱ(Sn/Ln), nᐱ(Sn/Mn), nᐱ(Sn/Nn), nᐱ(Sn/On), nᐱ(Sn/Pn), nᐱ(Sn/Qn), nᐱ(Sn/Rn), nᐱ(Sn/Sn), nᐱ(Sn/Tn),nᐱ(Sn/Un),  nᐱ(Sn/Vn), nᐱ(Sn/Wn), nᐱ(Sn/Yn), nᐱ(Sn/Zn), nᐱ(Sn/φn), nᐱ(Sn/Θn)

nᐱ(Tn/An), nᐱ(Tn/Bn), nᐱ(Tn/Dn), nᐱ(Tn/En), nᐱ(Tn/Fn), nᐱ(Tn/Gn), nᐱ(Tn/Hn), nᐱ(Tn/In), nᐱ(Tn/Jn), nᐱ(Tn/Kn), nᐱ(Tn/Ln), nᐱ(Tn/Mn), nᐱ(Tn/Nn), nᐱ(Tn/On), nᐱ(Tn/Pn), nᐱ(Tn/Qn), nᐱ(Tn/Rn), nᐱ(Tn/Sn), nᐱ(Tn/Tn),nᐱ(Tn/Un),  nᐱ(Tn/Vn), nᐱ(Tn/Wn), nᐱ(Tn/Yn), nᐱ(Tn/Zn), nᐱ(Tn/φn), nᐱ(Tn/Θn)

nᐱ(Un/An), nᐱ(Un/Bn), nᐱ(Un/Dn), nᐱ(Un/En), nᐱ(Un/Fn), nᐱ(Un/Gn), nᐱ(Un/Hn), nᐱ(Un/In), nᐱ(Un/Jn), nᐱ(Un/Kn), nᐱ(Un/Ln), nᐱ(Un/Mn), nᐱ(Un/Nn), nᐱ(Un/On), nᐱ(Un/Pn), nᐱ(Un/Qn), nᐱ(Un/Rn), nᐱ(Un/Sn), nᐱ(Un/Tn),nᐱ(Un/Un),  nᐱ(Un/Vn), nᐱ(Un/Wn), nᐱ(Un/Yn), nᐱ(Un/Zn), nᐱ(Un/φn), nᐱ(Un/Θn)

nᐱ(Vn/An), nᐱ(Vn/Bn), nᐱ(Vn/Dn), nᐱ(Vn/En), nᐱ(Vn/Fn), nᐱ(Vn/Gn), nᐱ(Vn/Hn), nᐱ(Vn/In), nᐱ(Vn/Jn), nᐱ(Vn/Kn), nᐱ(Vn/Ln), nᐱ(Vn/Mn), nᐱ(Vn/Nn), nᐱ(Vn/On), nᐱ(Vn/Pn), nᐱ(Vn/Qn), nᐱ(Vn/Rn), nᐱ(Vn/Sn), nᐱ(Vn/Tn),nᐱ(Vn/Un),  nᐱ(Vn/Vn), nᐱ(Vn/Wn), nᐱ(Vn/Yn), nᐱ(Vn/Zn), nᐱ(Vn/φn), nᐱ(Vn/Θn)

nᐱ(Wn/An), nᐱ(Wn/Bn), nᐱ(Wn/Dn), nᐱ(Wn/En), nᐱ(Wn/Fn), nᐱ(Wn/Gn), nᐱ(Wn/Hn), nᐱ(Wn/In), nᐱ(Wn/Jn), nᐱ(Wn/Kn), nᐱ(Wn/Ln), nᐱ(Wn/Mn), nᐱ(Wn/Nn), nᐱ(Wn/On), nᐱ(Wn/Pn), nᐱ(Wn/Qn), nᐱ(Wn/Rn), nᐱ(Wn/Sn), nᐱ(Wn/Tn),nᐱ(Wn/Un),  nᐱ(Wn/Vn), nᐱ(Wn/Wn), nᐱ(Wn/Yn), nᐱ(Wn/Zn), nᐱ(Wn/φn), nᐱ(Wn/Θn)

nᐱ(Yn/An), nᐱ(Yn/Bn), nᐱ(Yn/Dn), nᐱ(Yn/En), nᐱ(Yn/Fn), nᐱ(Yn/Gn), nᐱ(Yn/Hn), nᐱ(Yn/In), nᐱ(Yn/Jn), nᐱ(Yn/Kn), nᐱ(Yn/Ln), nᐱ(Yn/Mn), nᐱ(Yn/Nn), nᐱ(Yn/On), nᐱ(Yn/Pn), nᐱ(Yn/Qn), nᐱ(Yn/Rn), nᐱ(Yn/Sn), nᐱ(Yn/Tn),nᐱ(Yn/Un),  nᐱ(Yn/Vn), nᐱ(Yn/Wn), nᐱ(Yn/Yn), nᐱ(Yn/Zn), nᐱ(Yn/φn), nᐱ(Yn/Θn)

nᐱ(Zn/An), nᐱ(Zn/Bn), nᐱ(Zn/Dn), nᐱ(Zn/En), nᐱ(Zn/Fn), nᐱ(Zn/Gn), nᐱ(Zn/Hn), nᐱ(Zn/In), nᐱ(Zn/Jn), nᐱ(Zn/Kn), nᐱ(Zn/Ln), nᐱ(Zn/Mn), nᐱ(Zn/Nn), nᐱ(Zn/On), nᐱ(Zn/Pn), nᐱ(Zn/Qn), nᐱ(Zn/Rn), nᐱ(Zn/Sn), nᐱ(Zn/Tn),nᐱ(Zn/Un),  nᐱ(Zn/Vn), nᐱ(Zn/Wn), nᐱ(Zn/Yn), nᐱ(Zn/Zn), nᐱ(Zn/φn), nᐱ(Zn/Θn)

nᐱ(φn/An), nᐱ(φn/Bn), nᐱ(φn/Dn), nᐱ(φn/En), nᐱ(φn/Fn), nᐱ(φn/Gn), nᐱ(φn/Hn), nᐱ(φn/In), nᐱ(φn/Jn), nᐱ(φn/Kn), nᐱ(φn/Ln), nᐱ(φn/Mn), nᐱ(φn/Nn), nᐱ(φn/On), nᐱ(φn/Pn), nᐱ(φn/Qn), nᐱ(φn/Rn), nᐱ(φn/Sn), nᐱ(φn/Tn),nᐱ(φn/Un),  nᐱ(φn/Vn), nᐱ(φn/Wn), nᐱ(φn/Yn), nᐱ(φn/Zn), nᐱ(φn/φn), nᐱ(φn/Θn)

nᐱ(Θn/An), nᐱ(Θn/Bn), nᐱ(Θn/Dn), nᐱ(Θn/En), nᐱ(Θn/Fn), nᐱ(Θn/Gn), nᐱ(Θn/Hn), nᐱ(Θn/In), nᐱ(Θn/Jn), nᐱ(Θn/Kn), nᐱ(Θn/Ln), nᐱ(Θn/Mn), nᐱ(Θn/Nn), nᐱ(Θn/On), nᐱ(Θn/Pn), nᐱ(Θn/Qn), nᐱ(Θn/Rn), nᐱ(Θn/Sn), nᐱ(Θn/Tn),nᐱ(Θn/Un),  nᐱ(Θn/Vn), nᐱ(Θn/Wn), nᐱ(Θn/Yn), nᐱ(Θn/Zn), nᐱ(Θn/φn), nᐱ(Θn/Θn)

With 27 base sets to each set of ᐱ have 1⅄, 2⅄, 3⅄ paths occur with infinite library potential each that then 81 basic sets have other potential functions of X, 1+⅄, 1-⅄, 2-⅄, n from Y, P, N, whole number fractals in quantum field fractal polarization.

27 libraries multiplied by 8 basic function potentials multiplied by 27 library variables equals 5832 base libraries each with infinite numeral library stacking to infinite variables more give infinite cycles of a cn in those ratios. 

5,832 library base paths of 27 sets ᐱ with 8 functions applicable to  1⅄, 2⅄, 3⅄, X, 1+⅄, 1-⅄, 2-⅄, n , 3 libraries that all 5,832 libraries align to are ᐱ of (N) and ᐱ of (Y) and ᐱ of (P).

ᐱ of (P) is a function of a complex ratio with a prime number.

ᐱ of (Y) is a function of a complex ratio with a fibonacci number.

ᐱ of (N) is a function of a complex ratio with a number.

Another array of libraries are factorable of variables such as 2φ from 11φ for example to all sets and paths of the 5,832 library bases and more just as are array sets of variant paths for 3φ from 12φ and so on for all sets ᐱ of A,B,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,φ,Θ variables and paths 1⅄, 2⅄, 3⅄, X, 1+⅄, 1-⅄, 2-⅄, n and so on.

This library is a base logic of sets ᐱ prior to factoring variable sets for a library of (ᗑ) variables.

Numeral Array logic symbols to use of next tier alt paths and stem cell cycle notations 

ᗑ for (⅄ᗑ ) applicable to variable sets ᐱ,A,B,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,φ,Θ

ᗑ=(ᐱ/ᐱ) for paths 1⅄, 2⅄, and 3⅄ of ᗑ variables

(ᗑ)=1(⅄ᗑ) and 2(⅄ᗑ) and 3(⅄ᗑ) of variables ⅄ᐱ, ⅄A , ⅄M, ⅄V, ⅄W, A, M, V, W, φ, Θ, Q, Y, P  and whole numbers or a variable factors noted that (ᐱ) is applicable with in quanta such that (ᗑ)=(ᐱ/ᐱ) variables defined before a variable 

nncn=(⅄)(ncn)ncn 

or 

nncn=(⅄)(ncn)ncn 

are able to be calculated dependent on ncn definitions to φ, Θ, Q variables.

Given that these symbols represent a base of 10 variable tiers a categorizing library could then be devised for continued factoring.

The order of these from base numeral whole numbers is Y and φ path and P and Q path then A and M and V and W then E and F and I and H then ᐱ then ᗑ paths ⅄.

⅄ represents alternate path factoring of the variables 1⅄, 2⅄, 3ncn.

Logical Complex Variable Notation

1(⅄ᗑncn)/(⅄ᐱncn)

2(⅄ᐱncn)/(⅄ᗑncn)


3(1⅄ᐱncn)/(1⅄ᐱncn)

3(2⅄ᐱncn)/(2⅄ᐱncn)

3(3⅄ᐱncn)/(3⅄ᐱncn)


3(1⅄ᗑncn) /(1⅄ᗑncn)

3(2⅄ᗑncn) /(2⅄ᗑncn

3(3⅄ᗑncn) /(3⅄ᗑncn

refers to all or for any and when applied with notation for path of consecutive variables of sets ∈ and variables of not same sets ∉.

Given ∀ represents for any and ⅄ represents a function of sequential variables of sets ∈ variable number N or n.

then

12nd=(n3/n1)

22nd=(n1/n3)

and

13rd=(n4/n1)

23rd=(n1/n4)

and so on for functions of 1∀ and 2∀ variables.

Path functions +⅄, 1-⅄, 2-⅄, and X of function to set ∈ consecutive variables Nncn

+then are

+2nd=(n3+n1)

+2nd=(n1+n3)

and

+3rd=(n4+n1)

+3rd=(n1+n4)

and so on for functions of +∀ variables.

1-then are

1-2nd=(n3-n1)

and

1-3rd=(n4-n1)

and so on for functions of 1-∀ variables.

2-then are

2-2nd=(n1-n3)

and

2-3rd=(n1-n4)

and so on for functions of 2-∀ variables.

Xthen are

X2nd=(n3xn1)

X2nd=(n1xn3)

and

X3rd=(n4xn1)

X3rd=(n1xn4)

and so on for functions of X∀ variables.

So then 5,832 library base paths of 27 sets ᐱ with 8 functions applicable to  1⅄, 2⅄, 3⅄, X, 1+⅄, 1-⅄, 2-⅄, n  combined with variables of ᗑ functions and set functions applicable to those libraries of functions 12nd, 22nd, 13rd, 23rd, +, +2nd, +2nd, +3rd, +3rd, 1-, 1-2nd, 1-3rd, 2-, 2-2nd, 2-3rd, X, X2nd, X2nd, X3rd, X3rd produce more libraries of variables able to build sequential factors of definable complex numbers for Nncn

if 12nd=(n3/n1) and 22nd=(n1/n3) then variables from sets A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  φ  Θ  ᐱ  ᗑ  ∘⧊°  ∘∇° are applicable to the functions being that the set libraries are ordinal and numerated. The same variables of the noted sets then are also applicable to functions 13rd=(n4/n1) and 23rd=(n1/n4) so for example

12nd=(n3/n1) applied to variables of Y φ Θ P 1Q and 2Q are

12nd=(Yn3/Yn1)=(1/0)=0 and is not 1φn1

12nd=(φn3/φn1)=(2/0)=0 and varies based on cn of φncn variables stem decimal cycle notation.

12nd=(Θn3/Θn1)=(0.5/0)=0 and varies based on cn of Θncn variables stem decimal cycle notation.

12nd=(Pn3/Pn1)=(5/2)=2.5

12nd=(1Qn3/1Qn1)=(1.4/1.5) and varies based on cn of 1Qncn variables stem decimal cycle notation.

12nd=(2Qn3c1/2Qn1c1)=(0.^714285/0.^6) and varies based on cn of 2Qncn variables stem decimal cycle notation.

if 12nd=(n3/n1) then variables from sets A  B  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  φ  Θ  ᐱ  ᗑ  ∘⧊°  ∘∇° are applicable to the function 12nd=(n3/n1) dividing later every 2nd variable by the variable previous of a consecutive variable set numeral.

Then if 22nd=(n1/n3) variables from sets A  B  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  φ  Θ  ᐱ  ᗑ  ∘⧊°  ∘∇° are applicable to the functions being that the set libraries are ordinal and numerated. Previous divided by later 2nd variable of consecutive ordinal variables of noted sets to degrees of cn.

22nd=(n1/n3) applied to variables of Y φ Θ P 1Q and 2Q are

22nd=(Yn1/Yn3)=(0/1)=0 and is not 1Θn1

22nd=(φn1/φn3)=(0/2)=0 and varies based on cn of φncn variables stem decimal cycle notation.

22nd=(Θn1/Θn3)=(0/0.5)=0 and varies based on cn of Θncn variables stem decimal cycle notation.

22nd=(Pn1/Pn3)=(2/5)=0.4

22nd=(1Qn1/1Qn3)=(1.5/1.4) and varies based on cn of 1Qncn variables stem decimal cycle notation.

22nd=(2Qn1c1/2Qn3c1)=(0.^6/0.^714285) and varies based on cn of 2Qncn variables stem decimal cycle notation.

So then an alternate function  13rd=(n4/n1) and 23rd=(n1/n4) is factorable with variables from sets A  B  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  φ  Θ  ᐱ  ᗑ  ∘⧊°  ∘∇° for example

13rd=(n4/n1) applied to variables of Y φ Θ P 1Q and 2Q are

13rd=(Yn4/Yn1)=(2/0)=0 and is not 1φn1

13rd=(φn4/φn1)=(1.5/0)=0 and varies based on cn of φncn variables stem decimal cycle notation.

13rd=(Θn4/Θn1)=(0.^6/0)=0 and varies based on cn of Θncn variables stem decimal cycle notation.

13rd=(Pn4/Pn1)=(7/2)=3.5

13rd=(1Qn4/1Qn1)=(1.^571428/1.5) and varies based on cn of 1Qncn variables stem decimal cycle notation.

13rd=(2Qn4c1/2Qn1c1)=(0.^63/0.^6) and varies based on cn of 2Qncn variables stem decimal cycle notation.

if 13rd=(n4/n1) then variables from sets A  B  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  φ  Θ  ᐱ  ᗑ  ∘⧊°  ∘∇° are applicable to the function 13rd=(n4/n1) dividing later every 2nd variable by the variable previous of a consecutive variable set numeral.

Then if 23rd=(n1/n4) variables from sets A  B  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  φ  Θ  ᐱ  ᗑ  ∘⧊°  ∘∇° are applicable to the functions being that the set libraries are ordinal and numerated. Previous divided by later 2nd variable of consecutive ordinal variables of noted sets to degrees of cn.

23rd=(n1/n4) applied to variables of Y φ Θ P 1Q and 2Q are

23rd=(Yn1/Yn4)=(0/2)=0 and is not 1Θn1

23rd=(φn1/φn4)=(0/1.5)=0 and varies based on cn of φncn variables stem decimal cycle notation.

23rd=(Θn1/Θn4)=(0/0.^6)=0 and varies based on cn of Θncn variables stem decimal cycle notation.

23rd=(Pn1/Pn4)=(2/7)=0.^285714

23rd=(1Qn1/1Qn4)=(1.5/1.^571428) and varies based on cn of 1Qncn variables stem decimal cycle notation.

23rd=(2Qn1c1/2Qn4c1)=(0.^6/0.^63) and varies based on cn of 2Qncn variables stem decimal cycle notation.


So then a library of 4th 5th 6th 7th 8th 9th 10th and so on, can be structured to path functions   1⅄, 2⅄, 3⅄, X, 1+⅄, 1-⅄, 2-⅄, n  of variables from numerated consecutive sets  A  B  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  φ  Θ  ᐱ  ᗑ  ∘⧊°  ∘∇° 

If a variable is not of any Y, P, or A  B  D  E  F  G  H  I  J  K  L  M  O  Q  R  S  T  U  V  W  X  Y  Z  φ  Θ  ᐱ  ᗑ  ∘⧊°  ∘∇° sets then it is a number that is not of these sets and that makes it a variable unique number that can be noted with N or Nncn  of a set of numerically ordinal numbers such as Nncn∉{A,B,D,E,F,G,H,I,J,K,L,M,O,Q,R,S,T,U,V,W,X,Y,Z,φ,Θ,,,∘⧊°,∘∇°}

This is Advanced Complex Quantum Field Fractal Polarization Sets and these variables are applicable to field point factors of systems of a number structure as they have been defined such that a number Nncn∉{A,B,D,E,F,G,H,I,J,K,L,M,O,Q,R,S,T,U,V,W,X,Y,Z,φ,Θ,ᐱ,ᗑ,∘⧊°,∘∇°} in or out of the field of set variables {A,B,D,E,F,G,H,I,J,K,L,M,O,Q,R,S,T,U,V,W,X,Y,Z,φ,Θ,ᐱ,ᗑ,∘⧊°,∘∇°} are definable as a number Nncn


⧊Y, ⧊P,  and so on for 1st to 101st to 10101st to 1010101st to nth applied to variables from sets A  B  D  E  F  G  H  I  J  K  L  M  O  Q  R  S  T  U  V  W  X  Y  Z  φ  Θ  ᐱ  ᗑ are advanced complex quantum fractal polarization math set variables with potential and definable variable change able to be factored, defined, and used in practical applications.


email@1dir.cc

c.dir.1dir.cc  c.dir.1dir.org  c.dir.1dir.cloud

c://dir